Prospective Evaluation of Phasix[™] Mesh in CDC Class I/High Risk Ventral and Incisional Hernia Repair: 18 Months Follow-up

Roth JS¹, Anthone GJ², Selzer DJ³, Poulose BK⁴, Bittner JG⁵, Hope WW⁶, Dunn RM⁷, Martindale RG⁸, Goldblatt MI⁹, Earle DB¹⁰, Romanelli JR¹⁰, Mancini GJ¹¹, Greenberg JA¹², Linn JG¹³, Parra-Davila E¹⁴, Sandler BJ¹⁵, Deeken CR¹⁶, Voeller GR¹⁷

¹University of Kentucky (Lexington, KY), ²Methodist Health System (Omaha, NE), ³Indiana University (Indianapolis, IN), ⁴Vanderbilt University (Nashville, TN), ⁵Virginia Commonwealth University (Richmond, VA), ⁶New Hanover Regional Medical Center (Wilmington, NC), ⁷University of Massachusetts (Worcester, MA), ⁸Oregon Health & Science University (Portland, OR), ⁹The Medical College of Wisconsin (Milwaukee, WI), ¹⁰Baystate Medical Center (Springfield, MA), ¹¹University of Tennessee (Knoxville, TN), ¹²University of Wisconsin (Madison, WI), ¹³North Shore University (Evanston, IL), ¹⁴Celebration Health (Celebration, FL), ¹⁵University of California (San Diego, CA), ¹⁶Covalent Bio, LLC (St. Louis, MO), ¹⁷University of Tennessee (Memphis, TN)

Objective

Long-term resorbable mesh represents a promising technology for complex ventral and incisional hernia repair (VIHR). Preclinical studies indicate that poly-4hydroxybutyrate (P4HB) resorbable mesh supports strength restoration of the abdominal wall. The objective of this prospective, multi-institutional study was to evaluate outcomes of VIHR with P4HB mesh in subjects at high risk for postoperative complications.

Study Device

- Knitted monofilament P4HB (Phasix[™] Mesh)
- Predictably and gradually degrades via hydrolysis
- Contributes mechanical strength up to 12 months
- Scaffold enables remodeling by host tissue
- Essentially fully resorbed by 18 months

<u>Figure 1:</u> Phasix™ Mesh

Inclusion Criteria

- CDC Class I wounds (clean)
- Hernia defect: 10-350cm²
- ≤ 3 prior repairs
- ≥ 1 high-risk criteria (depicted in Figure 2)

Figure 2: Incidence of high-risk comorbid conditions (%)

Study Population

Subjects enrolled	n=121	
Subjects with 18 months follow-up	n=95 (79%)	
Sex	n=46 (38%) male n=75 (62%) female	
Age (years)	54.7 ± 12.0	
Body mass index (kg/m²)	32.2 ± 4.5	
Diagnosis	Primary ventral: 14% Primary incisional: 45% Recurrent ventral: 12% Recurrent incisional: 29%	

Table 1: Subject demographics and surgical diagnosis

Surgical Technique

Subjects underwent open ventral hernia repair with retrorectus or onlay placement of mesh (with or without additional myofascial release). Phasix[™] Mesh was positioned with its edges extending beyond the margins of the defect by at least 5 cm. Fixation was achieved with 6-12 resorbable sutures placed at approximately 5-6 cm intervals around the periphery of the mesh. The hernia defect was closed by approximating the fascial edges, including additional myofascial release, if required.

		Figure 3: Surgical	approach	
		Retrorectus (MR: my Retrorectus with MR	(MR: myofascial release)	
37.2%	35.5%	Onlay with MR <u>Table 2:</u> O	perative details	
	19.8%	Defect (cm ²)	115.7 ± 80.6	
6.6%		Mesh (cm²)	580.9 ± 216.1	
		Surgical procedure time (hrs)	2.8 ± 1.4	

Data Collection

Postoperative physical exam and quality of life assessments were performed at 1, 3, 6, 12, and 18 months. Medical history, demographics, and medication usage were also recorded at each visit.

Outcomes

Hernia recurrence	9% (n=11)
Surgical site infection	9% (n=11)
Seroma requiring intervention	6% (n=7)
Rate of reoperation	8% (n=10)
Device-related adverse events	9% (n=11)

High-risk VIHR with Phasix[™] Mesh demonstrated positive outcomes and low incidence of hernia recurrence at 18 months. Longer-term, 36-month follow-up is ongoing.

Disclosures

Please consult product labels and inserts for any indications, contraindications, hazards, warnings, precautions, and instructions for use. This study was sponsored by C. R. Bard, Inc. (Davol), Warwick, RI. Authors were reimbursed for expenses related to the conduct of the study. JSR, GJA, JGB, WWH, RGM, MIG, DBE, GJM, JAG, EPD, BJS, CRD, and GRV are paid consultants for C. R. Bard, Inc. (Davol). DAV/PHSX/0317/0150